17 Aralık 2018

The title

Long Range Guided Wave Propagation Experimental Analysis in Overhead Power Line Cables under Different Axial Load Levels.

Sergio Malo1, Makis Livadas1, Shu-Mei Tan1, Jamil Kanfoud1, Tat-Hean Gan1 and Cristinel Mares2

1Brunel Innovation Centre, Brunel University London, Uxbridge, Middlesex, UB83PH, United Kingdom

2Dept. Mechanical, Aerospace and Civil Engineering, Brunel University London Uxbridge, Middlesex, UB8 3PH, United Kingdom

Published under licence by IOP Publishing Ltd

The abstract

Over the past hundred years, overhead power line cables have been widely installed around the world. These cables are commonly exposed to adverse environmental conditions that can affect their structural integrity and over time, could lead to the complete failure of the structure. This research presents the use of guided waves for the inspection of the structural integrity of the overhead power line cables. The proposed system relies on permanently installing on power line cables a multiple transducers collar as well as a pulse receiver. The system is installed on the cable and performs automated regular inspections. One of the key features of this technique is its ability to inspect a long section of the cable from a single inspection point. To achieve this objective, the wave propagation features have been studied in a wide range of frequencies in 50m long cables, where different collar configurations were used. In addition, power line cables, when installed, are subjected to different axial loads depending on the type of cable and the distance between pylons. The effects of the axial load on the wave propagation have been studied. To assess the defect detection capabilities of the system over a wide range of distances without damaging the cable samples, a metallic clamp is used to introduce a cross-section change on the cables, simulating the effect of a fault on the cables (i.e. corrosion). The experimental results show the highly attenuative effect of the axial load on the wave propagation for most of the frequency spectrum. However, it was found that at low frequencies the system performance allowed the inspection of long distances. This was further proven with the experimental results for the clamp detection study.

Please see the full length article at the below link: